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Introduction

Intent

When looking for ideas for a project, | was drawn to the study of different
patterns and their applications. The beauty of fractals intrigued me from the start. The
combination of simplicity and complexity creates something completely unique. What is
especially interesting about them is that they all stem from mathematical formulas. If
mathematical formulas can create aesthetically pleasing fractal art, then why wouldn’t
they be able to create aesthetically pleasing fractal music? This is what | sought to find

out.

Chaos Theory

Before we begin discussing what fractals are, we will first discuss a little bit about
where they came from. Fractals first stemmed out of the study of chaos theory. Chaos
theory is the study of dynamical systems that are largely dependent on their initial
conditions, that is, if one would change the initial condition, the whole system would be
completely different. This has been known in many other disciplines as the butterfly
effect, named after one chaotic system that looks like a
butterfly (see figure), and made famous in 1972 with

Edward Lorenz’ book, “Does the Flap of a Butterfly’s Wings

in Brazil Set Off a Tornado in Texas” [1].
The word chaos in chaos theory is a bit misleading. What is happening in the

system is not actually random, though it may look random. In actuality, thereis a



complex pattern that creates something called a strange attractor, and it attracts the
solutions to a range of particular solutions. The butterfly in the one particular chaotic
system was the strange attractor of that solution. This attractor is called the Lorenz

Attractor. When these attractors are visualized, they are often called fractals.

Fractals

Fractals are traditionally thought of as a visual pattern having the characteristic
of self-similarity. They are generated by repeating a specified rule to a desired number
of iterations. In 1977, Benoit B. Mandelbrot coined the term “fractal” and studied much
of its geometry, specifically how fractals are able to mimic nature in a curious way [2].
Fractals can be generated to look like mountains, trees, and snowflakes, among other
natural phenomena. This is one of the interesting things about chaos theory.
Something that may look random could have an underlying pattern. This means we can
replicate the pattern to make something look random, such as the peaks and valleys of a
mountain range. This is something that is often used in computer graphics for popular
movies such as a planet in Star Trek 2: The Wrath of Khan, and splashing lava in Star
Wars: Episode 3 [3].

We will first use the example of the “snowflake curve,” also known as the triadic

von Koch curve [4]. First we start with a simple equilateral triangle:



The rule we will use for this triangle is that for each edge, we will divide it into 3 equal

parts. With the middle part, we will form another equilateral triangle.

/\

This is one iteration. Doing this to many iterations, the form of a snowflake begins to
take shape. This is our first example of a fractal. Each edge looks like every other edge,

as seen from the images from [5].

There is not a specific rule that says we have to make a fractal in this way.
Another way we can make a fractal is by changing the inside of the shape. Let us start

again with an equilateral triangle. This time we will inscribe an upside-down triangle.



This is one iteration. Our next iteration, we will do the same thing to every right-side-up

triangle. We could hypothetically do this an infinite number of times.

What we have made is called Sierpinski’s Triangle, first discovered in 1915 [6]. If we
look at one of the inner right-side-up triangles, it looks exactly like the large whole
triangle. This quality of being able to zoom in on figures, or zoom out, and have the
picture look exactly the same is intriguing about fractals.

In nature, this is seen with how the branching of one tree limb is similar to the
branching of the whole tree [3]. In a similar way, if we break off one piece of broccoli

from a stalk, the piece looks like the whole stalk. This is the essence of self-similarity.

Music

For those not familiar with music theory, we will cover the basics. The typical
scale includes twelve notes: C, C#, D, D#, E, F, F#, G, G#, A, A#, and B. Different
combinations of these notes make up different key signatures. For instance, we will
often be working with the C key signature, which orders the notes as such: C, D, E, F, G,
A, and B. These notes played to different melodies often sound the best together. Note
that this only includes seven of the twelve notes. We will sometimes be using only

these seven, and other times we will use all twelve.



Since this study will be including patterns of numbers, we will often use numbers
instead of letters for the notes. Mathematically, we will make the numbers modulo 7
(mod 7) when using the C key signature, or mod 12 when using all of the notes. Using
mod 7 as an example, we have the numbers 0 through 6. The number from 0 to 6 that
we choose will be the number that remains after we have subtracted off 7 enough
times. For example, if the number 7 appears, 7 - 7 = 0, and so we will use 0. If the
number 8 appears, 8 —7 = 1, and so we will use 1. If the number 23 appears, we will
subtract 7 three times until we get to 2, and so we will use 2. Another way to write this
is 23 mod 7 = 2. As noted before, each of these numbers will be assigned to a note.

When thinking about mod 12, is it easy to think of it as a clock. If we begin at 1
o’clock, and add 13 hours, we
are now at 2 o’clock [7]. In the 1+13=14

14modl12 =2
same way,

From this idea, we have the musical clock described in [8].

F#/Gb



Looking Ahead

In this paper, we will first discuss how we can apply integer sequences with
fractal properties to create melodies. We will then look at how these melodies contain
transformations that are similar to those that exist in music already. Looking at music
that already exists, we will explore how music naturally contains fractal properties.

Finally, we will evaluate the results and analyze the implications.



Fractal Integer Patterns

Mandelbrot Equation

We created fractals by taking simple shapes and using a rule to develop the
fractals from the shapes. We can create fractal integer sequences by choosing a
number, applying a rule to it, and resulting in a string of numbers. Mandelbrot, the man
who coined the name fractal, did this through his equation:

Z<z +c,

We use this equation by starting with an initial z-value, and a fixed c-value. After
calculating the right side, this calculated value becomes our new z-value, and it is fed
back into the equation [9]. By letting the first z = ¢, Mandelbrot would plot the c values

onto the complex plane which yielded a closed orbit [10]. For example, if we start with
c=z=1i,where | =+/—1 then the following z’s will be

z=i"+i=-1+i
z=(-1+i) +i=-i

z=(=i) +i=-1+1i,
and since -1 + i is already in the orbit, then the
orbit is closed and i is plotted on the complex
plane. This yields the fractal called the

Mandelbrot set pictured on the left [11]. The

self-similarity can be seen along edges.
The string of complex numbers can give us sets of coordinates of the complex

plane, with first coordinate as the real portion and the second coordinate with the
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imaginary portion. To get a single string of integers, we are able to choose real integers
for our initial values with the underlying equation giving us self-similarity. For example,
if we start withz=0and ¢ =1, the sequence will be 0, 1, 2, 5, 26, etc. The possibilities

for different sequences are endless given any self-fed formula.

Morse-Thue Sequence

The Morse-Thue sequence is also called a “ones-counting sequence.” It is called
this since it is generated by listing numbers in their binary notation, and counting how
many ones are in each number. Here are the binary numbers from zero to ten:

0,1, 10,11, 100, 101, 110, 111, 1000, 1001, 1010.

Now we will count how many ones are in each number, and list them again:

0,1,1,2,1,2,2,3,1,2,2.
This integer sequence just by appearance does not seem to have fractal characteristics,
until we examine it further. Since a string of numbers cannot be literally magnified,
then we can define magnify in another way. One way to simulate magnification is to
take away every other number. If we were to take away every other number of this
sequence, beginning with the first 1, we have

0,%41,21,22,3,1,2,2

0,1,1,2,1,2.

This is the same sequence that we originally started with. Thus, we have self-similarity

in the sequence, which is what makes it a fractal integer sequence [9].
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Not only can we “zoom in” on the sequence, we can also “zoom out.” If we
replace every number in the sequence with itself and 1 plus itself, then we come up
with the same sequence. So, 0, 1, 1, 2 becomes

0,0+1,1,1+1,1, 141, 2, 2+1
0,1,1,2,1,2,2,3.
This adds to the self-similarity.

We can also generate the sequence using a certain rule, as we did with the
equilateral triangles. This time, we start with a 0. The rule we will use is that for the
next 2™ terms, we will take the previous 2™ terms and add one to every number [12].
Thus, since the first term is 0, the second term is 1. The next two terms will be 0+1 and
1+1 which is 1 and 2. The next four terms will be 0+1, 1+1, 1+1, and 2+1, whichis 1, 2,
2, 3. Thus, the sequence is

0,1,1,2,1,2,2,3.

This sequence yields another famous sequence, known as the “Dress sequence,”
after German mathematician Andreas Dress [12]. If we take each of these numbers and
use them as exponents of 2 (i.e. 20,21 2% 2% 21 22 27, 23), we obtain the sequence:

1,2,2,4,2,4,4,8.
This sequence has similar properties as the Morse-Thue sequence. Generalizing,
applying any one-to-one function to this sequence will give us another sequence with
fractal qualities.

There are other integer sequences that have these properties that at first glance

have nothing to do with the Morse-Thue Sequence, many of which are listed on [13].
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One example of this is the sequence which lists the number of ways each integer can be
written as the sum of squares when order does not matter. For example,

0 = 0% +0°

1=0%+1°

2=1%+17
and so the first three integers of this sequence are 1, 1, 1. Since 3 cannot be written as
a sum of squares, then the next integer is 0. Skipping ahead, 25 can be written as 5° + 0
and 3% + 4%. Therefore, the 26™ entry of this sequence is 2. This happens to be the first
integer which can be written as two different sums of squares. Looking at the first 20
integers, we can see how this sequence contains the same sort of self-similarity:

1,41,6,1,4,0,6,1,4,1,6,0,4,0,6,1,4,1,6
1,1,1,0,1,1,0,0,1, 1.

This sequence does not look like the Morse-Thue sequence and is generated in a very
different way, yet it contains the same property of removing every other integer to get

the same sequence.

Other Bases

We initially created the Morse-Thue sequence by listing integers in their binary
notation, that is, base 2. A question that naturally arises is if this will work in other
bases. Since there are more than 1s and Os in other bases, we can look at base 2 again

and see that counting the ones is also adding the integers together. Therefore, we will



13

add the integers together in other bases. We will begin with base 3. These are the

integers from 0 to 20:

0,1,2,10,11,12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202.

If we add the integers in each number together, we get the sequence:
0,1,2,1,2,3,2,3,41,2,3,2,3,4,3,4,5, 2,3, 4.

Initially, it does not seem that this sequence has the same quality since if we take
away every other number, it does not give us the same sequence. Upon further
investigation, if we choose every third number, beginning with 0, then we will have the
same sequence:

0,1,2,1,2,3,2,3,41,2,3,2,3,4,3,4,5,2,3,4
0,1,2,1,2,3,2.

We were able to construct the Morse-Thue sequence by starting with a 0 and
applying some rule to that 0. Similarly, we are able to create this sequence beginning
with a 0. This time, taking our sequence of 3™ terms, the next 3™ terms will be created
by adding one to every term, and then the next 3™ terms will be created by adding two
to every term. Thus, we create 2*3™ terms from our original 3™. Therefore, our next
two terms of our sequence will be 1 and 2. At this point we have 0, 1, and 2. The next 6
terms willbe 1, 2, 3, 2, 3, and 4. Thus, we have0, 1, 2,1, 2, 3, 2, 3, 4.

Hypothesizing, if we list integers in base n, add the integers within each integer
to get our sequence, choose every nth integer of that sequence, we will arrive at the
same sequence. A simple proof of this can be seen that in any base, when we multiply

an integer by n, then we are simply adding a 0 to the end. When we take every nth
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integer, then we are taking On, 1n, 2n, 3n, 4n, and so on. Therefore, for any integer kn,
kn=k+0=k. Thus,
On, 1n,2n,3n,4n,..=0,1, 2, 3,4, ..
If we create two different sequences by counting the ones for the first sequence
and counting the twos for the second sequence, we have the following:
0,10,1,2,1,0,1,0,1,2,1,2,3,2,1,2,1,0,1,0
0,0100111200100,1,1,1,2,1,1,2.
By observation, we can see that if we choose every third integer for each sequence, we
will get the same two sequences back for the same reason as above. Since multiplying
by 3 in base 3 will add a zero to the number, then every third numberis0, 3,6, 9, ...
which will have the same one and two counts as 0, 1, 2, 3, ... Similarly, this will work
with any base. Therefore, whether we are adding up all of the integers in any base n, or
adding how many k’s are in each integer for some 0 < k < n, the resulting sequence with
have the fractal property of choosing every nth integer and having the result of the
same sequence.

Interestingly, the two sequences we created by counting the ones and twos of
integers base 3 are a linear combination of our sequence that we created by adding up
all of the integers within each integer. If we let our ones-counting sequence be A;, and
our twos-counting sequence be A,, then our first sequence is A;+2A,. Similarly, with any

base n, with n-counting sequences A,, our integer counting sequence will be equal to

i nA

n=l

n*
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Integers to Music

Direct Correlation

One of the simplest ways to covert integer sequences to music is convert the
numbers to a particular modulus and assign notes to numbers. We will start with the
Morse-Thue sequence as an example. We choose the key of C, and assign

C=0,D=1,E=2,F=3,G=4,A=5,B=6.
If we choose each note to be a quarter note, and we want four measures of music, then
we will take the first sixteen numbers of the sequence modulus 7. This gives the

following piece:

A
p

S

The beauty of making this piece directly from the fractal integer sequence is that the
fractal properties will hold for the string of notes. As with the integer sequence, if we
remove every other note from the melody, then the melody remains the same. Also, if
we replace each note with itself and one note higher, then the melody will remain the
same.

The problem with the piece is that there is no sense of rhythm. To create
rhythm, we can make a rule that for every repeated note, we can combine it to one
note that is held out longer. For instance, two quarter notes will become one half note.

Using this rule, this changes the piece to:

o

LA
| 1HES

| 1NN
N

Lt
| RN

| 1NN
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This makes the piece a bit more interesting, even though we lose the property of
removing every other note to get the same melody.

We need not restrain ourselves with going in order from C = 0 to B= 6. Using any
of our integer sequences, we can assign each number to any note. For instance, if we
let

C=0,D=3,E=5,F=1,G=4,A=2,B=6

then we have the following melody:

o}
7
7

[Fan)
Z

f
. &

| NN
| 1RES

ISES
=

LA
L 1an

Using this technique will give us intervals that are more interesting and perhaps more
pleasing to listen to. If we choose our notes carefully, then we can plan how we want
our intervals to sound and where we want the piece to go, and even more so when we
allow ourselves more notes to choose. To make things even more interesting, we could
use our two base 3 integer sequences together, and choose a different set of notes for

each sequence.

Integers as Notes and Rhythm

Another simple and interesting way to create music through integers is to assign
them not only to notes, but also to rhythm. An example of this would be if we looked at
the sets of coordinates given by Mandelbrot’s equation. We can assign the first integer
to a note, and the second integer to duration. To put some constraints on this, we will
take the first integer mod 7, and the second integer mod 4. We choose mod 4 for the

duration since we are working with a 4/4 tempo. Each set of coordinates can be



17

assigned to a measure, and if the note does not last the whole measure, the remaining
beats of the measure will be used as a rest.

For example, if we choose z = ¢ = 3i, our first four coordinates using the real part
as the first and the imaginary part as the second yield (0,3), (5,3), (2,1), and (3,3). This

gives us the following line of music.

,-
e \.}\?’
(ISP
v

QL
v
| 1HES
NERE
v

L

This line not only gives us an interesting melody line, but it also gives us a unique
rhythm. There are many ways to play around with this technique. For instance, we
could have used a different modular system. Instead of staying within the C key
signature, we could have made the first integer mod 12, using all twelve notes. We

could have also given it a 3/4 tempo and used mod 3 for the second integer.

Fractal Time Scales

We can also play around with how we scale our integer sequences. For instance,
since one of the ideas behind fractals is that it looks similar at every scale, then if we
play the integer sequence at several scales at one time, then the whole of the music will
contain that fractal quality. We will go back to our first Morse-Thue sequence melody. If

we play this at three different scales, this is what it would look like:



QL
-

When these lines are played together, it sounds as if one is playing the piano

18

with the sustained pedal down. Since every other note gives us the same melody, when

the melody is stretched out, the notes will match up to the original melody. This is

another way to visualize the fractal qualities of this sequence.
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Musical Transformations

Transformations

In our discussion of musical transformations, we will be using all twelve notes.
Certain interactions between these notes can be classified through two transformations.
When a chord moves from a major to a minor, or moves to a different chord altogether,
then it is undergoing a transformation or a composition of transformations.
Mathematically, the transformations are performing some kind of addition or
subtraction to the pitch represented by a number, or the chord represented by a set of
numbers. Note that this discussion of mathematical musical transformations should be
distinguished from the musical understanding of transformations. There will be a slight

difference in the understanding of transpositions and inversions in music.

Transposition

The first transformation we will consider is the transformation of transposition.
When a song is transposed from one key signature to another, all of the notes are
undergoing a particular transposition. Each transposition has a number that
corresponds with it. We may have a transposition of 2, denoted T.. In this case, each
note has 2 added to it, and then it is taken mod 12. A mathematical notation of this is
described in [9] as the following:

T,:Z,—>12,
T,(x):=x+nmodl2
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where Z represents the integers. This is not only useful in transposing a whole song, but
it is also useful when going from one chord to another. The chord C-major is
represented with numbers as 0, 4, and 7. When we transpose this chord by 2, we have
T>(0, 4, 7) = (2, 6,9), which gives us D-major. In fact, transposing a C-major will always
give us another major chord. We will need some other tool to get a minor chord,

namely the inversion transformation.

Inversion
Inverting a chord is akin to taking the inverse of a chord. Like a transposition, a

number is associated with each inversion. Inverting a note by 2 would be to take the
opposite of that note and then add two. The opposite of a note x is simply —x mod 12.
Mathematically, this is denoted:

l,:2,—Z7,

I (x):=-x+nmodl12
When we apply the inversion of 2 to C-major, we get /,(0, 4, 7) = (2, 10, 7), which is a G-

minor.

Composition of Transformations

The following table found in [9] can give us a broader look at the chord
structures. To get to a chord in the same column we need to perform a transposition,

and to get to the other column we need to perform an inversion.



21

Major Triads Minor Triads
C=1(0,47) 0,8,5)=f
Ci=Db=(1,5,8) (1,9,6) = fc=gb
D =(2,6,9) (2,10,7) =g
Dg=Eb=(3,7.10) | (3,11,8) =gt =ab
E=1(42811) 4,0,9) =a

F =1(5,9,0) (5,1,10) = az = bd
Fe=Gb=1(6,10,1) | (6,2, 11)=b
G=(7,11,2) (7.3,0) =¢
Gi=Ab=(8,0,3) (8,4, 1) =ct=db
A=(91.4) (9.5,2) =d
Az = Bb=(10,2,5) | (10,6,3) =dz =eb
B=(11,3,6) | (11,7.4) =e¢

If we go back to our example of /,(0, 4, 7) = (2, 10, 7), we can see that this can
also be expressed as an inversion and then a transposition of 2. This can be denoted as
I, = T>l. This will give us consistency when talking about composition of transformations
since there are many ways to get from one chord to another, as it is described in [8]. If
we wish to only invert the chord, then we can describe this as an inversion and a
transposition of 0, denoted Tyl. If we wish to only transpose, then we will leave off the /
as we did previously.

We can also view this set of transformations as a group. The first property of a
group is that it is closed. From the previous paragraph, we can see that the composition
of any two transformations will give us another transformation. The second property
that it must contain is the existence of an identity. In this group, To would bring us back
to the same chord, and is thus the identity. The third property it must contain is the
existence of an inverse for every element. If we consider the transformation T,/(x), the
transformation done to it is an inversion, -x, and then an addition of n. Thus, we have

T.l(x)=-x + n. To bring —x + n to the original x, we will first invert it, x — n, and then add n
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back to it. If the transformation does not contain an inversion, then it is of the form
Ta(x) = x + n. To bring it back to x, we add a —n. Therefore, we have

]jzloTn]=T0
T oT =T,

This means that every element has an inverse, and thus it is a group.
Recall that we can view the 12 notes as a

musical clock. These transformations that we

have discussed also perform transformations to

the 12-gon clock. Performing a transposition on

this clock will rotate the 12-gon counterclockwise.

Performing an inversion will flip the 12-gon. Therefore, we not only have a group, but
we have a group that is isomorphic to the dihedral group, which is the group of

symmetries of the polygon.

Transformations in Music

These transformations will often be found in music in moving from line to line or
chord to chord. Joseph Straus in Introduction to Post-Tonal Theory uses these
transformations when analyzing pieces of music, revealing where and why they are
used. In analyzing Schoenberg’s Book of the Hanging Gardens, he states that certain
lines are “transposed and ordered so as to reproduce, over a large span, the intervallic
succession of the opening melodic gesture” [7]. In essence, it is a tool that allows us to

recall a familiar part of the song in an interesting way.
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These transformations can also be found in our fractal generated music. We will
again look at our first melody that we created through the Morse-Thue Sequence,

except this time we will extend it to eight measures:

We can see that each measure looks similar to every other measure. Since we were
working with mod 7, we will continue to work in mod 7 for these transformations. The
second measure is T; of the first measure, since

T:(0,1,1,2)=(1,2,2,3).
Similarly, the fourth measure is T, of the first measure, or T; of the second and third
measures, since

T20,1,1,2)=T41,2,2,3)=(2,3,3,4).
If we let the first measure be Ty(0, 1, 1, 2), and we list out the measures in terms

of this measure, we have

To, T1,T1, T2, T1, T3, T2, T3,
Taking out the numbers, we have

0,1,1,2,1,2,2,3.

This is the beginning of the Morse-Thue sequence. Thus, if we begin with a measure of
our choosing, and then perform these same transformations on that measure to

generate the following measures, then we will have a piece that is fractal.
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We can conclude from this discussion of transformations that our fractal
generated music does have similar properties of musician composed music. This should
not be surprising since the basis of fractals is the idea of self-similarity, and a widely
used tool in the composition and the analysis of music is the idea of patterns and

repetition.
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Fractal Dimension of Music

Is Music Fractal?

We know that if we generate a melody through an integer sequence with known
fractal qualities, we will come up with music that has those innately fractal qualities.
The question still remains: does music naturally have fractal qualities? Research has
found that many things in nature do. Mandelbrot considers this when he looks at the
length of the coastline of Britain. At first, it seems as if measuring the length would be
as simple as measuring any line. It turns out this is not the case. Since any coastline is
very jagged, the smaller the measuring stick used the longer the distance calculated,
until at some point we consider the length infinite. We need some other tool when

thinking about this jagged line. This tool happens to be fractal geometry [2].

Fractal Dimension

When we look at the Koch Snowflake, we run into the same
problem. Since there are an infinite number of iterations, the length

of the border of the snowflake will grow infinitely. Even though it

looks like a closed shape with a finite boundary, there is actually an infinite boundary.
Since the snowflake is a fractal, it is not one-dimensional or two-dimensional since those
do not exactly make sense in this geometry. Instead, we consider its fractal dimension
[3].

When thinking about measuring the dimension of a fractal, we must first think

about how to measure the dimension of any shape. If we consider a unit square broken
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al1alala] up into sixteen parts, then the area of the square is A = 16(1/4)* =1. If

we let r be the ratio of a small square within the square to the whole

square, n be the number of small squares that it is broken into, and d

be the dimension of the square, then 1 = n(r)d. Solving for d, we can use this formula to
find the dimension of any object. Solving for d gives us

_ logn
log(1/r)

Generalizing n and r, we can say that n is the number of pieces used to construct
the whole piece, and S = 1/r is the scaling of the pieces [4]. Returning to our snowflake
example, in constructing the snowflake we break each side into 3 pieces, and then use 4
pieces to reconstruct the side. Therefore, the fractal dimension of the snowflake is

_log4

d ~1.26

log3

The coastline of Britain, however, is not an iterative line. We must use some
other idea to find its fractal dimension. This time, we will use € as the length of the
measuring stick, and L(g) as the estimated length using that measuring stick. If we
decrease ¢, then L(€) will increase [2]. After taking a variety of measurements using
different values for €, we plot log(g) on the x-axis, and log(L(€)) on the y-axis. Using the
least-squares method, we come up with a linear line with a negative slope. The slope is
defined as (1-d). A study was done on a variety of slopes using s instead of €, and the

plot is the following graph [14]:
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15

. Australia
Log(L(s))=-.13Log(s)+4.4

- South Africa
Log(L{s))=-04Log(s)+3.8

Log(L(s))=-12Log(s}+3.7
—Great Britain
Log(L(s))=- 24Log(s)+3.7

Log(L(s))

~Portugal
= m e w e~ o LoglE)=12logepdl

Log(s)

Since the coast of South Africa is of dimension 1.04, this means that it is very close to
being a smooth line, and thus it is not very rough. This also shows that Great Britain has
the roughest coast, with a fractal dimension of 1.24. To show that this is true, compare

the coastlines in the following maps:

v
“

Great Britain

South Africa'

Fractal Music

In finding the dimension of these jagged lines, we know that in actuality, the
coasts are going between the dimensions of length and width. Music also has
dimension. Instead of length and width, it has the dimensions of time and amplitude.
When looking at fractal dimension, we are no longer doing a melodic study as we have

been previously doing. Instead, we are doing an amplitude analysis. When music is
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mapped with time on the x-axis and amplitude on the y-axis, we are given a jagged line
much like the edge of a coast. Thus, in the same way we can find the fractal dimension
of a coast, we can also find the fractal dimension of music. Here is an example of about

one second of “Come Together” by The Beatles mapped out using Audacity:

In an undergraduate study, Perrin Meyer observes the fractal dimension to

music that is mapped out, and sought to find out what that dimension is for a variety of
styles of music. He used the box-counting algorithm,

log(N(e)) = —D =log(e)
where ¢ is the length of the measuring stick used and N(g) is the number of measuring
sticks used. After plotting log(N(g)) versus log(g), D is the fractal dimension. As a result
of this study, he concludes that music averages a fractal dimension of 1.65, varying from
1.6 to 1.69 regardless of the genre of music [15].

To test his conclusion, we will set up our own test using three different styles of
music. We will use a rock song, “Come Together” by The Beatles, a techno song,
“Sandstorm” by Darude, and a classical song, “Strauss Party” by André Rieu. To limit our
data set, we will only use portions of these songs no longer than ten seconds. If we pair
up each data sets by 2s, 3s, 4s, and 5s, then, using Maple, we can find the distance
traveled between each set. In essence, we are using “measuring sticks” of sizes 2, 3, 4,

and 5.
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The resulting graphs of plotting log(N(g)) versus log(g) can be found below. The
results are that “Come Together” is of fractal dimension 1.1915, “Sandstorm” is 1.839,
and “Strauss Party” is 1.3015. The closer to 2, the rougher the line, and the closer to 1,
the smoother the line. It makes sense that the techno song is closer to 2 than the
others, since it is “noiser.” While certainly more tests should be done to see if there is a
distinct difference in fractal dimension in various types of music, it can be seen with

these that there is more of a deviation from 1.65 than Meyer supposed.

Come Together

__ 34
w32
2
% .3 y=-1.1915x+3.6133
928

2.6

0 0.2 0.4 0.6 0.8
Log(e)
Sandstorm

5
o
> 4.5
® 4
S y =-1.839x + 5.0183

3.5

0 0.2 0.4 0.6 0.8
Log(e)
Strauss Party

4
w38
£ 36
S 3.4
S 3, ¥=-1.3015x+4.2518

0 0.2 0.4 0.6 0.8
Log(e)
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Conclusion

The aesthetic quality of the music we created, as with any type of music, is
subjective. To the mathematician who created it, it may be surprisingly interesting to
listen to as one may hear patterns and repetition, as with the Morse-Thue Sequence. To
a musician, it may sound not much more than mediocre. To neither, it may sound dull
and uninspired.

Gustavo Diaz-Jerez created a fractal music software called FractMus [16]. It uses
sequences created by choatic systems to create music. The user can choose a variety of
combinations of different algorithms and instruments. The problem is not everything
one chooses will sound very pleasing. In fact, most of the combinations sound random.
However, if one works at it, one can create songs that have depth and interest. In the
same way, fractal art pieces are only eye catching and interesting when a person is able
to manipulate it.

When considering the usefulness of fractal music, Michael Peters says that “it
might prove more rewarding to embrace the limits of fractal music, emphasizing its
nonhuman aesthetics and acknowledging its unpredictability, and to combine it with
improvisation” [17]. Music is meant as something that is an extention of ourselves to
convey something to the listener. It is purpose-driven, whether that purpose is to
inform us, envoke some sort of emotional response, or allow us to escape. Music that is
created by a computer, with little human intervention, misses a part of that. Itis

limiting. While fractals can help us to understand the structure of music or provide us
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with a tool to delve into musical composition, they can never replace human musical
composition.

Our discussion also leaves us with more questions that have yet to be
investigated. Does the fractal dimension of music that is mathematically generated by
fractals have a connection to the fractal dimension of the shape or structure it comes
from? Is there a way to smoothly transition from a fractal artpiece to fractal music? In
what other ways are there natural connections between fractals and music? These

topics that we have discussed form a good starting point for future research.
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